
Detection and Estimation of J-Shaped Risk-Response Relationship

Els J. T. Goetghebeur; Stuart J. Pocock

Journal of the Royal Statistical Society. Series A (Statistics in Society), Vol. 158, No. 1. (1995),
pp. 107-121.

Stable URL:

http://links.jstor.org/sici?sici=0964-1998%281995%29158%3A1%3C107%3ADAEOJR%3E2.0.CO%3B2-3

Journal of the Royal Statistical Society. Series A (Statistics in Society) is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Apr 1 15:45:43 2008

http://links.jstor.org/sici?sici=0964-1998%281995%29158%3A1%3C107%3ADAEOJR%3E2.0.CO%3B2-3
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rss.html


J. R. Statist. Soc. A (1995) 
158, Part 1, pp. 107-121 

Detection and Estimation of J-shaped Risk-Response Relationships 
By ELS J. T. GOETGHEBEUR? and STUART J. POCOCK 

London School of Hygiene and Tropical Medicine, UK 

[Received January 1993. Revised January 19941 

SUMMARY 
Current statistical approaches for analysing potentially J-shaped relationships between a 
risk factor and disease outcome can be seriously misleading. For instance, a simple 
quadratic model is widely used but can substantially exaggerate the statistical evidence for 
an upturn to the left. Instead, a family of double-quadratic models is proposed in which 
the relationship between risk factor and disease outcome is represented by two indepen- 
dent quadratic curves (one to the left and one to the right) joined at a low point to be 
estimated. Asymptotic results are derived for a semiparametric approach that can use 
standard software to assess the strength of evidence for the existence of a J-shape and 
estimate the location of the turning point. Alternatively, the minimum p-value of a 
sequence of trend tests on subsets of data increasing from the left yields a simple but 
anticonservative initial screen of the evidence for a linear or quadratic upturn. We indicate 
how this ndive minimum p-value can be corrected to a conservative level. For most 
practical situations, the clear demonstration of a J-shaped relationship needs a much 
larger amount of data than is generally appreciated. The approaches proposed are 
illustrated with data on diastolic blood pressure and the risk of coronary death. 

Keywords: 	BLOOD PRESSURE AND RISK; CHANGEPOINT; DOUBLE-QUADRATIC MODEL; 
J-SHAPED RELATIONSHIP; SEQUENTIAL TESTS FOR TREND; SURVIVAL ANALYSIS 

1. INTRODUCTION 

The possibility of J-shaped relationships between risk factors and disease outcomes 
has become increasingly recognized in medical references. It arises if, for example, a 
well-established risk factor is suspected of becoming inversely related to risk below a 
certain point, whereas the more widely accepted positive risk association exists across 
most of the observed risk factor distribution. Examples include diastolic blood pres- 
sure and coronary heart disease (Farnett et al., 1991), alcohol and mortality (Marmot 
et al., 198 1) and cholesterol and mortality (Frank et al., 1992). Birth weight and infant 
mortality (Wilcox and Russell, 1983) or environmental temperature and daily mortal- 
ity (Polychronaki et al., 1982) are examples of a mirror image of the J-shape: there 
is a predominant decreasing risk associated with increasing covariate values and a 
less pronounced upturn in risk to the right of the risk factor distribution. 

Recognition of a J-shape and the subsequent location of a turning point can have 
major clinical or public health consequences. For instance, is it dangerous to lower 
blood pressure below a certain level? The statistical methodology presented here has 
three main objectives: 

(a) to test for a J-shaped relationship; 
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(b) 	 if the relationship exists, to estimate both the turning point and the shape 
of the association; 

(c) 	 to display the results in an informative and unbiased manner. 

The methods considered can relate either to fully parametric generalized linear 
models (e.g. a logistic model for a binary response) or to semiparametric models 
(e.g. the proportional hazards model for time to event). The latter are often more 
appropriate for medical event data, and we examine them in detail. 

Our aim is to provide statistical approaches that can be applied to any data with 
a possible J-shaped risk. Current approaches, such as fitting a simple quadratic 
function, are potentially misleading as shown in Section 2. In Section 3,  an alter- 
native is proposed based on a family of double-quadratic models. It leads to a direct 
test for a J-shape and also allows for estimation of the turning point (with its 
confidence bounds). A simple but anticonservative sequential testing approach is 
defined in Section 4, while Section 5 describes a more comprehensive analysis for 
the estimation of the risk function. Section 6 gives an illustrative example on 
diastolic blood pressure and risk of coronary death and practical consequences are 
discussed in Section 7. 

2. CURRENT APPROACHES 

An interesting example is from the Swedish primary prevention trial, which studied 
the relationship between treated diastolic blood pressure and coronary morbidity 
in 686 treated hypertensive subjects followed for 12 years (Samuelsson et al., 1990). 
Other relevant examples include D'Agostino et al. (1990), Farnett et al. (1991) and 
Frank et al. (1992). When investigating a potentially J-shaped relationship, a first 
descriptive step is to split the x-axis (blood pressure) into intervals and to plot the 
observed event rates within each interval, adjusted for other factors (e.g. age) if appro- 
priate. In determining the cut points, data snooping (post hoc selection based on the 
observed data) to enforce an artificial J-shape should be avoided while also ensuring 
that intervals are not so wide that they obscure a real upturn to the left. Fig. l(a) 
shows the unadjusted incidence rates of coronary disease presented in the Swedish 
trial. Within each blood pressure category, the estimated variance of the log-hazard 
rate is inversely proportional to the number of events in that category. Drawing 
confidence intervals to convey the degree of uncertainty in the estimates or 
indicating the number of events adds valuable information to such plots. 

Assuming that there is some suggestion of a J-shape at this stage, we investigate 
further. In most medical examples, there are many more data to the right of the 
observed low point (nadir) than to the left; the first two categories in Fig. l(a) have 
seven and nine events, which suggests that there is limited statistical power to detect 
a J-shape. Although data plots of this kind are a useful descriptive tool, they do 
not provide a firm basis for formal statistical inference. There are also potential 
problems in the arbitrariness of chosen intervals and plotting positions of extreme 
groups. Categorizing can waste information, and so to enhance power we use the 
full risk factor information. A quadratic function, the obvious candidate that allows 
for an upturn, has become a popular approach for modelling J-shapes. However, 
it has problems, as follows. 

Let xi denote the risk factor value of interest, i.e. diastolic blood pressure, and 
let the hazard rate at time t for the ith individual be 
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Fig. 1. Treated diastolic blood pressure and evidence of coronary heart disease in 12 years follow-up 
in the primary prevention trial (87 cases in 686 subjects followed): (a) observed percentage 12-year 
incidence of coronary heart disease against mean in-study diastolic blood pressure; (b) fitted relative 
hazards from the simple quadratic model against mean in-study diastolic blood pressure 

where ZT is the vector of all other covariates. Hence, the log-relative-hazard is a 
quadratic function of xi.  This model was fitted by Samuelsson et al. (1990) for the 
Swedish data, with xi representing diastolic blood pressure during treatment and 
ZT comprising base-line blood pressure, serum cholesterol, smoking habits and 
age. The estimated function is shown in Fig. l(b). However, the test of H,: P2 =0 
versus H I : p2 > 0 as evidence for the existence of an upturn is potentially mis- 
leading. In the Swedish trial this test has a p-value of 0.002, correctly indicating 
that inclusion of the quadratic term in the model provides a significantly better fit 
to the data than the linear term alone. However, the nadir of the fitted curve is 
- fl,/2f12=81 mmHg, to the extreme left of the observed blood pressure data, so 
that the estimated quadratic may predominantly reflect non-linearity in the positive 
association to the right rather than specifically an upturn to the left. As also shown 
by Roy and Potthoff (1958), Fieller's theorem would allow for calculation of an 
approximate confidence interval for the nadir by using the estimated covariance 
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matrix of 6, and B2. In this example, it is likely that the confidence interval goes 
well below the observed blood pressure range, as only two events had been observed 
with a diastolic blood pressure below 81 mmHg. 

Generally, the p-value for p2 in a simple quadratic regression model is not a 
reliable measure of evidence of an upturn to the left. Also, the location of the 
estimated nadir and the length of the confidence interval around it depend on the 
precision of the two estimated shape parameters and can easily be driven by data 
to the right of the estimated nadir. To avoid confounding between evidence for left 
and right upturn we model both sides explicitly by independent parameters, as 
considered next. 

3. MODEL WITH NON-FIXED CHANGEPOINT 

For simplicity, we focus on a single risk factor but adjustment for other risk 
factors can be made in the usual way. Consider a proportional hazards model from 
a 'double-quadratic family', i.e. two (different) quadratic arms meeting at a change- 
point 11 as follows: 

= A o ( ~ )ex~{ 'Yl (x i -~ )~I (x i  	 > v)),G 7) + ~ z ( x i - ~ ) ~ I ( x i  (1) 

where I is the indicator function. So the log-relative-hazard is a function of three 
unknowns: two quadratic coefficients yl and y2, and the turning point (or nadir) 
11. Let the true underlying parameter values be (y?, y:, 11'). Note that for any fixed 
cut-off point 11 the magnitude of the two quadratic coefficients yl and y2 can be 
different, which is reasonable, given that 

(a) 	 we are not even sure that an upturn in risk to the left exists and 
(b) 	 it is desirable to have separate estimates of the strength of evidence for left 

and right upturns. 

An equivalent model could be used with binary event data and logistic models or 
Poisson counts and log-linear models: indeed any generalized linear model. 

The simple null hypothesis No:y; =0 versus HI:y; > 0, with y2 left undefined, 
tests for an upturn to the left. In the blood pressure example, as long as y; is not 
positive, no harm is done by lowering blood pressure below If y; > 0, the 
parameter 11 directly represents the nadir that we are interested in. The option to 
model a piecewise quadratic function rather than a piecewise linear function is 
motivated by the smoother change in log-relative-hazard rate at T,J which is bio- 
logically more plausible, whereas both cover the same null model to the left of the 
nadir. Other options are considered in the discussion. 

We caution against naYve use of partial likelihood results to make inference about 
y, and 11. The log-hazard rate is a linear expression in yl and y2, but 11 enters the 
likelihood in a non-linear (non-smooth) way. Only in the theoretical situation with 
v0 known, and by defining the covariates 

Zi 1 = (xi - < 11') ,v O ) ~I(x~ 

zi2 = (xi-110)2 I(xi> 110) 	
(2)  



19951 J-SHAPED RISK-RESPONSE RELATIONSHIPS 11 1 

for each individual, is the problem reduced to a conventional proportional hazards 
model. Testing and estimation of y, is then straightforward with standard soft- 
ware. In practice q0 is unknown. Alternative analysis strategies are explored in the 
next two sections. 

4. SEQUENTIAL QUADRATIC TESTS 

Consider repeated significance tests for a downward trend in risk on increasingly 
large subsets of the data, where each test is confined to subjects whose risk factor 
xi is below a certain cut-off point. The subset of data grows as the cut-off point 
is moved to the right and the smallest p-value of the sequence is examined. This 
has some analogy with sequential analyses in clinical trials (Geller and Pocock, 1987; 
Tsiatis, 1982), but moves from left to right on the risk factor axis, rather than on 
the time axis. It also relates to work by Davies (1977, 1987) as discussed in Section 
7.1. 

Let the parameter q move from the lowest meaningful x, which we call q,, to a 
value qu, beyond the point where its true value q0 might reasonably be sought. For 
each q, restrict the data set to the observations i for which xi < q. Then fit the 
model hi( t) =ho(t)  exp{yl(xi -q)I2  to the reduced data set and record the naive 
standardized normal deviate for TI, say 2,. 

Let Z,, =max{Z,, q, < q < qu}. Under model (I), ZVo < Z,,, where Z,O results 
from a fit using the known changepoint as explained at equations (2). Hence, com- 
pared with the correctly informed analysis the evidence for an upturn is over- 
estimated if the naive N(0, 1) p-value associated with Z,, is used. With such an 
anticonservative test, lack of statistical significance can be trusted as insufficient 
evidence to confirm a J-shape. However, a small naive p-value for Z,, should 
first be interpreted as a marker for more detailed analysis, rather than confirmation 
of a J-shape. Also, insufficient evidence in favour of a J-shape does not constitute 
evidence against it unless the study was sufficiently large (see Section 7). In practice, 
Z, may only be computed for a limited number of equally spaced values (e.g. 
2 mmHg intervals of diastolic blood pressure). Using martingale arguments we can 
obtain consistent estimators of the covariance between 2,s for different values of 
q and derive an adjusted conservative p-value for the group sequential test. A 
description of this method is available on request. Unfortunately, the work involved 
is substantial and compared with the method of Section 5 it gives lower power and 
no consequent estimators. Hence we consider this naive sequential testing as a 
simple preliminary technique to see whether further analysis is warranted. 

5 .  FULL ANALYSIS 

The changepoint problem in model (1) has been extensively studied in normal 
error models. It exemplifies a segmented polynomial model within the broader 
framework of multiphase regression models (Seber and Wild, 1990). When the 
errors are independently normal with constant variance, proofs of asymptotic 
normality of the least squares estimates have been developed with difficulty. Gallant 
(1971) was the first to prove asymptotic normality of the maximum likelihood 
estimates under fairly tolerant conditions: continuous first-order derivatives of the 
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likelihood (which includes the double-quadratic model) and some additional restric- 
tions on the covariate distribution. He also studied the power of the likelihood ratio 
test of location in this setting (Gallant, 1975). 

As far as we know, none of the equivalent properties has been proved for 
generalized linear models or proportional hazards models. Nevertheless they have 
been used in practice (see for instance Rigby and Stasinopoulos (1991) and 
Stasinopoulos and Rigby (1992a)) and GLIM macros to fit such models are available 
(Stasinopoulos and Rigby, 1992b). A proof of asymptotic normality of the partial 
likelihood estimates for model (1) under the condition that no subject's risk factor 
level is too close to the true cut-off point is given in Appendix A. Under such 
assumptions, we now derive an asymptotic confidence interval for 11 and an 
asymptotic p-value for y1 by using standard software. 

First, the maximum partial likelihood estimates are obtained from the profile 
likelihood as follows. A range of possible values T,J for the nadir is scanned. (For 
instance with diastolic blood pressure we might usefully start with values 5 mmHg 
apart.) For each chosen 11, we proceed as if it were the true known nadir and fit 
the full model (1) as in Section 3 to obtain the maximum log-likelihood value at 
that point, l ( q )  = l (q l (q) ,  qz(7) ,  q) ,  along with the estimates q l ( q )  and q2(q) .  By 
a search across the values of 7, we obtain the maximum of this profile log-partial- 
likelihood at 11 = rj with corresponding estimates ql(r j )  and qZ(r j )  . We denote this 
global maximizing value by (q,, q2, rj) . 

An asymptotically correct p-value for yl and confidence interval for T,J can be 
obtained from likelihood ratio statistics as follows. Construct the profile log-partial- 
likelihood for model (1) subject to yl = 0. Let the maximum under this reduced 
model be reached at T2, ij and denoted by l(0, T2, ij) . Then, under Ho: y1 =0, 
21(q1, q2, rj)  -21(0, T2, ij) is asymptotically distributed as ~ 1 2 .  

The 100(1 -a)% confidence interval for T,J contains all 11-values for which the 
hypothesis Ho: T,J'=T,J is not rejected by the likelihood ratio test and is obtained as 
follows. Plot the profile likelihood for 11 under the full unrestricted model (1). Next, 
subtract the x12-deviate associated with probability a, from 21(q1, q2, r j ) .  The 
confidence interval consists of all 11-values for which 21(q1(q), qz(7), 11) lies 
between the maximum, 21(q1, q2, rj), and 21(q1, q2, rj)  -x:. In the examples that 
we have analysed this procedure yielded a simple connected interval. 

From the assumptions explained in Appendix A, there is concern that the 
asymptotic results might not apply very quickly in finite sample data sets or with 
general covariate distributions. Because of the extensive computing time required 
we have not yet explored this issue with a large scale simulation study but have done 
some checks of plausibility using simulated data in S-PLUS as follows. 

We generated 1000 blood pressure data points from an N(83, 122) distribution. 
This approximates to the blood pressure distribution in a typical British middle-aged 
male population. We supposed that the true probability of an event followed a 
logistic model with intercept 0 and double-quadratic arms meeting at changepoint 
T,JO =75. For efficiency of computing, the event rate at 11 = T,IO was set rather high, 
i.e. at probability $. That is, for comparable power in a realistic blood pressure 
setting we would need more subjects, but with a lower event probability. Next, we 
generated 2000 data sets each of size 1000 subjects from the null model: y: =0 and 
y,O=0.003. 

The analysis of each such simulated data set scanned discrete changepoints 11 
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equal to 65, 70, 75, 80 and 85 and derived likelihood ratio statistics on yl as 
described above. Owing to our computational restrictions another level of approx- 
imation to the method was introduced through the scanning of relatively few 
potential changepoints. On our simulated data sets, the analyses appeared to be 
slightly anticonservative: the x;-statistic for an upturn exceeded the 5% point 3.84 
in 6.26% of simulations (95% confidence interval 5.2-7.3 %). 

Simulations under the alternative situation y, =y2 =0.003 found a significant 
quadratic effect to the left in 63.3% of the 400 simulations. This compared well 
with a power of 63.8% (255/400) of the informed analysis (i.e. knowing T,IO= 7 3 ,  
but the scanning of just five potential changepoints would enhance comparability 
here. 

The corresponding estimator of T,I was centred around 75 with a much smaller 
variance than for the null situation, as expected. For this truncated estimation pro- 
cedure the likelihood ratio confidence interval for T,J had 75 as lower or upper limit 
in 6.5% (26/400) of the cases (close to the desired 5%). No higher lower limit or 
lower upper limit was obtained. 

6. EXAMPLE: FRAMINGHAM DATA 

In this section we apply the proposed methods to data from the Framingham 
study where the issue of a possible J-shaped relationship between diastolic blood 
pressure and risk of coronary death was of interest. 

On the data tape available to us 5209 people were examined at 2-year intervals 
over 30 years of follow-up. D'Agostino et al. (1991) provide a detailed study of the 
same question on 34-year follow-up data. Their interesting findings stimulated us 
to apply our methods to the Framingham study data. One method of analysis is 
to relate each measured diastolic blood pressure to the occurrence of coronary death 
within the next 2 years for the 15 episodes recorded. D'Agostino et al. (1990) have 
argued why this 'person-years' approach is close to the time-dependent covariate 
Cox regression analysis. We examine the r'elationship between the risk of dying from 
coronary heart disease within 2 years and the diastolic blood pressure at the start 
of those 2 years for patients aged between 45 and 84 years who had a previous 
myocardial infarction and no previous congestive heart failure. The models used 
here adjust for age only since the covariates cholesterol, smoking status and diabetic 
status showed no significant association with risk in this subgroup. There are 1604 
person examinations and 104 coronary deaths for this analysis. 

Fig. 2 shows the observed proportion of events in blood pressure categories of 
10 mmHg, with the number of events indicated. We need the confidence intervals 
to realize that the evidence for a J-shape is limited: the point estimates have a great 
level of uncertainty. 

Using logistic regression, we first examine the simple quadratic fit (Section 2), 
which yields the results 

with nadir -f11/2f12=80.1 mmHg. On the basis of Fieller's theorem the calculated 
confidence interval for the nadir is very wide: 46.6-89.0 mmHg. However, note our 
previous caution against the interpretation of the significance of the quadratic 
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Categories of diastolic pressure in mmHg 

Fig. 2. Diastolic blood pressure in categories at the start of a 2-year period and proportion of 
cardiovascular deaths in the next 2 years in a subgroup of Framingham study subjects with a previous 
myocardial infarction: *, observed incidence rates within blood pressure categories and confidence 
intervals (the numbers of coronary deaths are given alongside) 

coefficient f12 as evidence of an upturn to the left. Instead, let us explore the 
proposed double-quadratic model (Sections 3-5) for these same data. 

The result of performing sequential quadratic tests to the left (Section 4) are 
displayed in Table 1. The minimum p-value obtained equals 0.064. Even this anti- 
conservative test shows only marginally significant evidence of an upturn to the left. 

However, for completeness of presentation here, the statistical evidence for a J-
shape is assessed by fitting the full model. The profile partial likelihood for model 
(1) is shown in Fig. 3, from which we obtain the estimate of the cut-off point r j  =79 
with maximized 2 times the log-likelihood equal to -761.43. The maximum like- 
lihood analysis (Section 3) yields estimates 

TABLE 1 
Sequential quadratic tests 

Cut-offpoint 70 75 80 85 86 87 88 89 90 95 100 
p-value for y, 0.96 0.81 0.31 0.11 0.083 0.064 0.21 0.28 0.26 0.26 0.54 
loow,  1.7 3.8 9.2 9.4 9.5 9.4 6.0 4.9 4.7 3.5 1.5 

http:-761.43
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choice of eta 

Fig. 3. Twice the profile partial likelihood for the nadir in diastolic blood pressure ('eta') for coronary 
heart disease risk in a subgroup of Framingham study subjects with a previous myocardial infarction 

The adjusted p-value for y1 from the likelihood ratio test described in Section 5 
gives X f  = 1.13 with p =0.29, i.e. insufficient evidence of an upturn to the left 
even though the point estimate represents an observed substantial upturn in that 
range. The significance of the quadratic term f12 appears to contradict this, but 
perhaps it is too dominated by the rise at the right-hand side. This is also reflected 
in the small changes in the profile likelihood when moving q below r j .  No useful 
confidence interval for q can be obtained, essentially because there is insufficient 
evidence to support the J-shaped relationship. It would be interesting to explore 
whether the application of our methods to the more-extensive 34-year follow-up 
data in DYAgostino et al. (1991) would confirm their conclusions. 

7. DISCUSSION 

We have demonstrated that the statistical problem of detecting and locating a 
J-shape usually requires more specific techniques than descriptive plots or fitting 
a simple quadratic association. In particular, the simple quadratic fit is unable to 
disentangle evidence of an upturn to the left from evidence of a curvilinear 
(quadratic) upturn to the right. We have provided a double-quadratic model which 
enables us to address directly the real question: is there evidence of an upturn to 
the left? Although small sample properties may warrant further investigation, the 
model helps to clarify what evidence of a J-shape really exists in any given data 
set. Before summarizing the practical conclusions, some methodological issues are 
discussed next. 

7.1. Methodological Issues 
The methods proposed in this paper are (semi)parametric and built on quadratic 

assumptions. In many applications this will be appropriate and especially so when 
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a preliminary simple quadratic fit turned out to be significant. In other circum- 
stances we may be looking for a linear or perhaps nonparametric upturn to the left. 
Both ideas can be explored. 

A linear trend from the left can be investigated through either a sequential linear 
trend test or a linear-quadratic model. The former is a linear version of the (group) 
sequential test approach in Section 4 and gains some appeal because we then have 
a true submodel for each q < qO, i.e. in each step with q below q0 we have an 
unbiased estimate of the fixed but unknown linear slope. However, for q0 
unknown it remains unclear how this approach can derive an optimal overall 
estimate of any linear downward trend from the left. 

A related problem of testing for a change in linear trend at some unspecified point 
was studied by Davies (1977, 1987). His approach is similar to our sequential testing 
but starts from a set of finite sample Gaussian test statistics. The supremum is taken 
over a continuous set and an upper bound on the p-value derived. Furthermore, 
in the setting considered by Davies, the changepoint disappears under the null 
hypothesis of interest and it is not estimated as it is considered a nuisance parameter. 

The respective abilities of linear and quadratic tests to detect a significant trend 
will depend on the true underlying relationship and the distribution of the risk factor 
in the left-hand tail. In 400 simulations based on the true quadratic model as 
described under the alternative hypothesis in Section 5, the tests gave similar results 
with the linear test rejecting the null hypothesis in 70.5% of the simulations and 
the quadratic test rejecting in 66.3%. 

The linear-quadratic model fits a global linear function with a quadratic change- 
point to the log-hazard rates as follows: 

Similar conditions as for the quadratic-quadratic fit would need to be fulfilled to 
justify the asymptotic properties of the corresponding partial likelihood approach. 
In model (3), evidence for a J-shape requires 5; < 0. The nadir is no longer 
directly parameterized by q, but reached at x = q  -11/23i. 

Other parametric models can describe risks that level off or go to an asymptote, 
e.g. inverse polynomials (McCullagh and Nelder (1989), p. 291). Unfortunately, 
their parameters are globally defined as for the simple quadratic test, and the 
specific test that we require is not readily derived. When the emphasis shifts towards 
model fitting, however, they deserve to be explored and techniques as in Royston 
and Thompson (1993) could be used to compare non-nested models. 

A nonparametric trend test for an upturn to the left has the obvious appeal of 
avoiding any parametric assumptions. An adaptation of the approach discussed by 
Stone (1988) and Takacs (1962) works as follows. Concentrate on the data set within 
the risk factor range of interest, i.e. from q, to q, as described in Section 4. Rank 
the observed risk factor values from small (1) to large (N)and condition on the 
total number d of events accrued over the set. If the risk factor has no effect on 
the event rate, the number of events accumulated over all x-values with rank below 
r, say d,, is expected to be (r/N)d. Hence, the accumulated number of events 
plotted against the ranks tends to follow a straight line through the origin with 
constant slope d/N. If smaller x-values have a higher event rate, then more events 
will be accrued among the low ranks and less among the higher ranks. The initial 
slope of the cumulative number of events d,/r is the rate at which events appear 



19951 J-SHAPED RISK-RESPONSE RELATIONSHIPS 117 

and will tend to be higher for smaller r than the expected d/N. An exact null 
distribution of the maximum slope over the ranks, max,{d,/r), can be calculated. 
This approach is worth further exploration, though it may lack power and does 
not readily extend to censored survival data and to adjustment for other risk 
factors. 

The general problem of low power suffered by all methods suggests a meta- 
analysis in this field. Specific methodology to combine evidence on observed risk 
factor associations from several studies has not been widely considered (one example 
can be found in MacMahon et al. (1990)). Only when the full data sets of all studies 
are made available can a stratified proportional hazards analysis be performed 
which allows for different base-line hazards but uses the same parameters for the 
parametric part of the model in all studies. We should not nalvely combine 
quadratic upturn estimates based on different changepoint estimates. However, it 
is conceivable to combine related independent test results in an overall measure with 
more power (Greenland (1987), p. 18). 

7.2. Practical Conclusions 
One practical motivation for our research has been the need to control the 

plethora of 'false positive' claims (type I errors) for J-shape relationships which have 
arisen through inappropriate statistical analysis and an overenthusiasm to find 
interesting and positive relationships. This has been particularly apparent in studies 
of treated diastolic blood pressure and coronary heart disease as discussed by 
Fletcher and Bulpitt (1992). However, it is equally important to recognize that type 
I1 errors (i.e. failure to detect a true J-shape) are a serious possibility given the small 
size of many data sets. For instance, in the Framingham data that we examined there 
was insufficient evidence of an upturn ( p =0.29) though the estimated double- 
quadratic curve (Fig. 2) is still compatible with a sizable true upturn in risk for 
diastolic blood pressure below 79 mmHg. The problem is that in too many epidemio- 
logical applications the nadir is liable to be well into the tail of the risk factor 
distribution. Thus, it requires very large studies indeed to have sufficient subjects 
(and events) to the left of the nadir so that realistic J-shape relationships can be 
detected and described. 

Only if we both use appropriate statistical methods and have data sets with 
adequate statistical power can we reliably determine the statistical validity of any 
particular J-shape hypothesis. Until then, arguments about the causal interpretation 
and practical meaning will either be of only academic interest or may lead to mis- 
guided decisions in clinical and public health policy. 
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APPENDIX A: ASYMPTOTIC THEORY FOR THE FULL MODEL 


We need to investigate the properties of the (partial) maximum likelihood statistics 
derived from model (1) because q enters the expression in a non-smooth way, i.e. for a given 
sample of size n with covariates {xi, i = 1, . . .,n )  the second derivative of the log-partial- 
likelihood with respect to q will not exist at each point q =xi. At those points the left-hand 
second derivative will generally differ from the right-hand second derivative unless y, =y2, 
and likewise for higher order derivatives. We assume that q lies strictly within the range of 
the observed x-values. 

We first prove asymptotic normality for the score statistic in the next section. Next, 
our proof of the existence of a sequence of consistent solutions to the score equations 
assumes that there is a neighbourhood of the true q0 in which no xis lie. Following this, 
there is a neighbourhood of oO=(yf', y;, q 4  in which the theorem of Taylor can be used 
to yield asymptotic normality of the solution to the score equations and the asymptotic 
X2-distribution under the true model of twice the partial likelihood ratio statistic. 

The condition that the xs cannot come arbitrarily close to e0is unfortunate, even though 
it is naturally met in certain situations where it is implied by the study design, e.g. a discrete 
x-distribution as in trials with few well-chosen target blood pressures (Dahlof et al., 1991; 
HOT Study Group, 1992). However, Gallant's (1973) proof of asymptotic results of the 
quadratic changepoint model with normal errors does not need such heavy restriction on 
the x-distribution and this gives rise to the conjecture that here also the condition can be 
relaxed. 

A. 1. Asymptotic Normality of Score Vector 
For the double-quadratic model we can construct a partial likelihood in the usual 

way. At each event time the contribution consists of the hazard from the failed individual 
at that time, divided by the sum of the hazards of the individuals still at risk at that 
time. Thus, for any fixed value of the three parameters 8 =(yl, y2, q) we obtain the log- 
partial-likelihood: 

9 ,  3 and grindicate respectively the sets of individuals who died and those who died with 
x-value to the left and to the right of the point q. In a similar way is the risk set at the 
event time of the ith subject and ailand airare those subsets with x-values to the left and 
to the right of q respectively. 

The first-order derivatives with respect to all the parameters exist and are continuous 
functions of those parameters. Introducing some extra notation, we can simplify the form 
of the score function. Let Ni(t) = 1 when the ith subject's event happened before t and let 
Ni(t) = O  otherwise. For i = 1, . . .,n: Iil(q) = 1 if xi < q and I i l (q)  = O  otherwise; Iir(q) = 
1 -Ii1; Yi(t) = 1 if the individual is at risk at time t, and Yi(t) = O  otherwise. Finally, 

With the vector Zi(8) = (Zil( O ) ,  Zi2(8), Zi3 (8)) the score functions dl(8, l)/dO now are 
(assuming that we rescaled time on the interval [0, 11) 
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Let the intensity process of Ni(t) be hi(OO, t)  Yi(t) with O0 equal to the true parameter (yp, 
y:, q4and hi(@', t) as in Section 4. We assume that the 'normal' boundedness conditions 
hold, i.e. 

and the xs are bounded with probability 1. It is now easy to calculate that the compensator 
of the three components of dl(oO, t)/dO (with t e  [0, 11) is 0, so they are in fact (sqtiare 
integrable) martingales. 

The (k, m)th element of the covariation process of 

takes the form 

where k and m take values 1, 2 and 3, and all parameter values equal the true value: 8'. 
Under limiting assumptions similar to those made in the classical proportional hazards 

model (see Andersen and Gill (1982)), we can use the inequality of Lenglart to prove that 
expression (6) converges in probability to the matrix 

where vZ,,(O0, u) is the limit in probability for n -,cm of the urn model (Miller (1981), 
p. 85) variance v,,,(O~, u) of Z with weights wi(oO, U) and sO(OO, u) is the probability 
limit of ( l /n)E wj(OO, u). 

The conditions are then fulfilled to apply the martingale central limit theorem yielding 
asym totic normality N{O, 9 ( 0 ° ,  1))  of the score function at the true parameters (y:, 
y:, $).A consistent estimator of 9 ( 0 ° ,  1) is obtained in the usual way by replacing 
wiho(u) du by dNi(u) in expression (6). No special restrictions on the x-distribution are 
needed at this stage. 

A.2. Consistency of Maximum Likelihood Estimate 
We can prove the existence of a consistent sequence of solutions to the score equations 

from concavity of the log-partial-likelihood function 1 in a neighbourhood of the true 
parameters with arbitrarily large probability. We assume that 9 ( 0 ° ,  1) is invertible. 

Focus on a finite sample size n and therefore a finite number of x-values. This function 
1 is continuous and has continuous first-order derivatives at each point (yl, y2, q). It also 
has continuous second-order derivatives with respect to the ys for each fixed q. Furthermore, 
the second-order derivative with respect to q exists and is continuous at each q different from 
an observed xi. 
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Fix any point (yl, y2, q) with q $(xi, i =1, . . . , n). The scaled second-order derivative 
with respect to the three parameters at that point is minus the following: 

The matrix V, , (8 ,  u)  indicates the urn model covariance of the Zi(8) at time u with 
weights wi(8, u) .  Hence, V,,,(8, u )  is automatically positive semidefinite. The bs in the 
second matrix take the form of observed minus expected values under that same urn 
model: 

where X i l = 2 ( x i  -7 )  I i l(q),  Xi2=2(xi  -7 )  Ii,(q) and Xi3=2ylIi l  +2y21i,. Again, under 
assumptions similar to those in Andersen and Gill (1982), it follows that the integrals over 
the bj(8)s in r ,(8,  1) are continuous functions of 8 at 8O, even though Xj3(8) itself is not. 
The proof uses the inequality of Lenglart, boundedness of the xs and convergence in 
probability of 

to 0 as 8 tends to 8'. 
Combined with convergence in probability of the estimator corresponding to expression 

(6) to .9(e0, I), this means that r n ( 8 ,  t = 1) becomes positive definite in a neighbourhood 
of 8' with arbitrarily large probability as n becomes big. A combination of the inverse 
function theorem as in Foutz (1977) and the inequality of Lenglart then yields the desired 
result (Goetghebeur (1990), pages 64-65). 
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